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Abstract. The use of smart energy meters enables the monitoring of large quantity of data related 

to heat consumption patterns in buildings connected to DH networks. This information can be 

used to understand the interaction between building and the final users´ without accurate 

information about building characteristics and occupational rates. In this paper an intuitive and 

clarifier data-driven model is presented, which couples heat demand and weather variables. This 

model enables the disaggregation of Space-Heating & Domestic Hot water demand, 

characterization of the total heat demand and the forecasting for the next hours. Simulations for 

53 building have been carried out, with satisfactory results for most of them, reaching R2 values 

above 0.9 in some of them. 

1. Introduction 

Information and Communication Technologies (ICTs) are changing the way of working of many sectors 

within technology, revolutionizing the energy management. The computational capacity has rapidly 
increased in the last few decades, enabling a novel way of running simulations, named as data driven 

models based on a large amount of information. Regarding energy systems, the core technology that is 

currently use for collecting the necessary data is the smart energy meters. These devices enable the 
gathering of energy consumption, among other thermal variables such as temperature, with a specific 

time frequency, typically 15 min or 1 hour [1]. The drivers behind the employment of smart metering 

include energy load management, peak or demand reduction, fraud reduction, accurate billing and water 

conservation [2]. 

In the past decade, the interest of energy meters was focused on electricity smart grids where the 

introduction of these devices at household level enabled detailed recording of consumption. The study 

of the gathered data enables to the electricity operators to identify patterns of use at consumer level and 

this way optimizing electricity grid functioning and allowing to integrate flexibility techniques into the 

entire system. However, this study is focused on the possibilities that recent energy meters offer to 

District-Heating (DH) system and the heat flow management.  
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DH networks are responsible for covering the 13% of the total heat demand in the EU [3]. Although 

most of the DH networks are located in the northern countries due to their large load for Space-Heating 

(SH), [4] & [5] show the cost effectiveness of these heat supply system in other locations. Traditionally, 

DH systems have been based on a large production plant, typically a Combined Heat & Power (CHP) 

plants due to the advantages of producing electricity and heat at the same time. DH system, as well as 

other energy system need to evolve and adapt to new requirements, reaching the 4th Generation DH 

systems or 4GDH. 

The so-called 4GDH introduce the design and operation improvements necessary to reach the de-

carbonization objectives of the heat supply within the EU. The introduction of Renewable Energy 

Sources (RES) into the heat production mix is the core of the 4GDH. These new generation DH networks 

are also known as Ultra Low Temperature or ULT DH because the temperature of the supply line is 

supposed to be reduced up to 45ºC, when the current network supply heat typically above the 75ºC. The 

reduction of supply temperature enables the introduction of low-grade RES such as the solar thermal 
system, geothermal heat-pumps, waste heat streams form Data-centers etc. Moreover, a lower 

temperature gradient in the distribution pipelines reduce heat losses, optimizing the heat distribution 

system.  

DH networks, as well as electricity grids, needs to evolve into active systems where the instant heat 

load that needs to be satisfied controls the heat production and vice versa. Gradual introduction of RES 

into the heat production mix also incorporates a degree of uncertainty, due to the changing conditions 

of weather variables. This makes even more important the information that can be achieved from the 

energy meters about the consumption patterns in the different building that conform the overall network.  

This paper presents a data driven model based on machine-learning techniques, such as classification 

and regression, that allow the characterization of the total heat load in a building and enabling the heat 

load forecast for the next time-steps.  

The rest of the paper is divided into 5 sections. In the next chapter, a literature review that summarizes 

the state of art of data-driven models in terms of DH networks is presented. Then, different methods 

used along the study are shown, followed by the analysis and results chapter. To conclude, the 

conclusions from the study are drawn, indicating as well, which are the possibilities for the future that 

can follow this study.   

2. Literature Review 

The field of application of data mining techniques is very extensive, however, this paper is focused on 

the application of identifying energy clusters and interesting distributions along the heat consumption 

that explain the building behavior.  

Data-driven models focused on buildings´ energy consumption are widely applied to either profile 

energy consumption patterns (i.e. data-driven classification models) or estimate the building energy 

demand (i.e. prediction models) [6]. The most used data-mining techniques are clustering, classification 

and regression. Clustering and classification are usually applied to characterization problems, since they 

enable the classification or partition of the whole dataset into different groups or clusters with similar 
patterns. On the other hand, prediction problems are usually solved by regression solutions. Other 

algorithms such as the Neutral Networks (NN) are also used for prediction problems. 

Regarding clustering processes, K-mean clustering is the most used algorithm which is based on 

calculating and optimizing the distance between K centroids that represents each the clusters. This way 

and based on the K-means clustering, [7] study the heating data from 139 single-family houses in 

Denmark concluding that as the same way than for electricity, heat consumption also shows different 

profiles for weekdays and weekends. Regarding supervised techniques, Decision-trees (DT) enable the 

data partition by a variable that is currently known.   

There are several regression models, since the simplest unique-variable regression, up to the ones 

based on support vector machines. Regression models try to find the relation, linear or not, between the 

output (the variable that has to be predicted) and the rest of variables names as predictors. It is difficult 

to find studies about heat demand regression, but [8] investigates the importance of long term forecast 

of the electric and heat load in non-residential building through regression models.  



 
 
 
 
 
 

In summary, there are several data-mining techniques available for the analysis of heat loads in DH 

context. This paper will be focused on supervised techniques and in detail, multivariate linear regression 

combined with DT.  

 

 

3. Methodology 

This study, as well as all the data-mining algorithms are based on a similar way of application. This 

methodology is shown in the following image.  

 

Figure 1. Methodology for data-mining application to a data-set.  

 

The methodology applied in this study can be listed in the following steps: 

• Step 1: The data received from the smart energy meters usually contains anomalous and missing 

values. The outliers have to be removed to ensure a high-quality data. This data can also be 

preprocessed and converted into a different time-step data. For example, if data is received with 

an hourly frequency, this can be converted into daily data if transient effects along the day are 

wanted to be removed.  

• Step 2: The whole data set is divided into training and testing data. In this step, it is necessary 

to avoid diving data into two groups with different consumption patterns. For example, it has to 

be avoided that training data coincides with summer and testing data with winter or that only 

some days of the weeks are included etc. Training and testing data may be carefully chosen.  

• Step 3: The training data is used for the application of the data-mining algorithms. In this step, 

the objective is to optimize the characterization of heat loads by applying the necessary 

modelling. This step can also be used to identify patterns that can improve the model.  

• Step 4: The model trained with training data is used with the testing data. This way it is possible 

to know the accuracy of the model for prediction by comparing real data with the results 

obtained with the model. 

All the calculations have been made in R [9], using adequate libraries for each of the applications.  

3.1. Data Description 
This chapter will describe the data used in this study. Two main sources are used: Heat load data from 

energy meters and weather data taken from an online query from the University of Tartu [10].  
Data from energy meters in DH substations is kindly supplied by Fortum Tartu (Estonia), which is 

the operator of this large DH network. The received data corresponds to the hourly total heat 

consumption in 53 different buildings in the network. The buildings are represented by an ID completely 



 
 
 
 
 
 

independent from the real address, avoiding any type of identification problems. The energy meters are 

situated in the secondary side of the DH substation, gathering the total heat consumption (Space-heating 

(SH) + Domestic Hot water (DHW)) in the building. These readings are collected since the 1st of January 

2019 and they are still metering and sending information. This way, for this study 8 months of hourly 

data (since January to October) is used, including this way summer and winter period. 

It is known that heat load consumption, prominently, SH consumption is function of the weather 

variables of that moment. This is way, the models proposed in the following chapters rely on the relation 

between weather and heat demand variables. In the online query supplied by [10], data from 1999 to 

2019 is available for all the climatic variables with a 5 minutes frequency. From all the variable available 

and considering the scope of this study, 4 climatic variables are used: Outdoor temperature [ºC], solar 

radiation [W/m2], wind speed [m/s] & the wind direction [-]. In the following image, correlation matrix 

between all the variable in the system is shown.  

 

Figure 2. Daily correlation matrix between heat loads and weather variables 

 

The whole data previously commented is coupled by the time variable. So, the whole data set is 

divided into training and testing data. To do so, 50/50 distribution is made, separating the data into even 

and odd days. Even days are used as training data and for characterization purposes, whereas odd days 

are used to test the model in prediction purposes.  

3.2. T algorithm & Q Algorithm for building Characterization 

The basis for both algorithms is the same and consists in a loop that divides data by a moving reference 

variable. The flowchart of this algorithm is shown in the Appendix.   

As commented before, part of the demand is not dependent on weather variables. The part of the 

demand that corresponds with DHW is function of the user’s habits, independent from weather and it 

can be considered as a relatively constant value in daily and lower frequency. This is way, the T 

algorithm proposes to divide data by a determine temperature, TREF. This temperature coincides with 

the temperature that activates the SH demand. Above this temperature, it is supposed that there is only 

DHW consumption. This way, equation (1) is proposed. 

 

Talg    Q = {
α1 + α2 x TOUT + α3 x GT  + α4 x WS  +  α5 x WD, T < TREF

α0, T ≥ TREF
 

(1) 



 
 
 
 
 
 

 

However, this model is not able to characterize part of the demand. This is way, a new algorithm is 

proposed, defined by equation (2).  

 

Qalg   Q = {
α1 + α2 x TOUT + α3 x GT  + α4 x WS  + α5 x WD , Q < QREF

α0, Q ≥ QREF
 

 

(2) 

 

In Q-algorithm data is divided by QREF, turning into another output variable of the model. This way 

and observing Figure 3, data are divided by a horizontal equation. Below QREF, only DHW is consumed 

whereas above this constant, there is DJW & SH demand.  

   

Figure 3. Q-algorithm for different QREF applied for one building 

 

This Q-algorithm is applied for both, hourly and daily data. 

Moreover, time clusters are recognized by data analysis. Different patterns for weekdays/weekends 

(in daily data) are observed and night setback is also observed in hourly data. This is why, 2 different 

DT are applied. 

• DT1: The whole data is divided by the day of the week (Mon, Tue, Wed…)   

• DT2: The whole data is divided by the hour of the day (0AM, 1AM, 2AM…) 

This way, equation (2) is applied to each of the clusters. In daily characterization of the buildings, 

DT1 is only applied to the Q-algorithm, whereas hourly characterization requires the application of both, 

DT1 & DT2 decision trees. 

3.3. Heat Load Forecast/Prediction 

Once that all the coefficients have been achieved from the application of the Q-algorithm in the training 

data, these coefficients are now applied to the testing data. If the model simulates correctly the thermal 

behavior of the building, the testing data may validate the model accuracy. The prediction capacity also 

relies on the quality in the weather variables forecasting and outdoor temperature above all.  

3.4. Calculation of model accuracy 

The assessment of the proposed models for the characterization and prediction of the buildings´ heat 

load under study may be enforced to some common metrics.  

R squared value is the statistical measurement of the correlation between the predictors and the 

regressed variable, with the following mathematical presentation 

𝑅2 = 1 −  
𝑆𝑆𝐸

𝑆𝑆𝑌𝑌
 

𝑆𝑆𝐸 =  ∑( 𝑌𝑖 − 𝑋𝑖 )2

𝑁

𝑖 = 1

 

(3) 

 

(4) 

 



 
 
 
 
 
 

𝑆𝑆𝑌𝑌 =  ∑(𝑌𝑖 −  𝑚𝑒𝑎𝑛(𝑋))
2

𝑁

𝑖 = 1

 
(5) 

Where, Yi is the value got from the regression, Xi is the real value for the total heat consumption and 

N is the size of the testing data. This value  

4. Analysis & Results 

The analysis of the result got from the application of the Q-algorithm model relies on the analysis of the 

evolution of the R2 in the different buildings connected to the DH network.  

In Figure 4 characterization results in hourly frequency is shown, comparing real data (black points) 

with the data coming from the model (red points) against the outdoor temperature.  

   

Figure 4. Characterization results for 3 different buildings in hourly frequency 

 

Regarding characterization of the daily aggregated data, Figure 5 shows the characterization results 

for the same building than in Figure 4.  

   

Figure 5. Characterization results for 3 building in daily frequency 

 
Finally, when the model is applied to predict heat load, the results for R2 for daily and hourly data 

are shown in the following image. Each of the building is named with its respective ID.  

 



 
 
 
 
 
 

 

Figure 6. R2 values for daily and hourly prediction 

5. Discussion 

The main objective of this study has been to present a methodology with simple data mining technique 

that enable both, characterization and prediction of heat loads in buildings connected to a DH network. 

53 different buildings have been analyzed, with different uses and characteristics, some of them with 

DHW consumption and some of them without it. 

For this purpose, 2 different models are presented. Firstly T-algorithm that have been proved not to 

be very satisfying, but the Q-algorithm have been demonstrated to work quite well.  

The model proposed in this paper is simple and clear, enabling the identification of both DHW & SH 

consumption.  

The presented data-driven model could be applied for different purposes. On the one hand, it can be 

used for heat load prediction in DH context. When all the buildings in a district are characterized and 

using climatic forecasting, heat load that needs to be satisfied can be calculated and this why, produce 

only the required energy every moment, optimizing energy costs at production level. Other objectives, 

such as energetic analysis or pattern recognition of energy consumptions are identifies among others.  

Observing daily data, different patterns of consumption have been identified for weekdays and 

weekends and in consequence, DT1 have been applied. In hourly data, two working modes have been 

identified, day and night setback. To model this difference in working modes and the transition between 

these two functioning modes, DT2 have been applied.  

The training data have been used for the characterization purposes, whereas the testing data have 

been used for forecasting heat load. As the model have been calculated with the testing data, 

characterization results are more accurate than prediction. 

Observing results for R2 in prediction, daily data show better results. When aggregating data to daily 

frequency, transient effects caused by the different patterns of use along the day are avoided, resulting 

a in simpler model, easier to predict. In daily data, values of R2 from 0.44 up to 0.94 are obtained which 

can be considered very accurate results. However, in hourly frequency data, sue to the difficulty of 

predicting every single transient effect the R2 values are lower, from almost 0 to the 0.88. Even though 

the R2 is very low in some of the buildings, the results are not so inaccurate. When there is an outlier, 

and the prediction is far away from reality, the R2 value decreases drastically, even though the rest of 

the points are near the real data.  

The consumption shape in each of the buildings is completely different and this is why, the error 

analysis should be particularly analyzed. In most of the cases the model slightly overestimates in summer 

period, what, from a DH operator perspective is not a critical problem, since the minimal energy 

requirement and in consequence, thermal comfort is ensured at final user level.  
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6. Conclusions & Future Work 

Smart meters have increasingly been used for monitoring heating consumption. Data-driven models that 

enable the heat load forecasting in short time period will be very useful for DH operators,  

For future work, the introduction of unsupervised machine learning techniques is proposed. Even 

though the complexity of the model will increase, and the  intuitiveness of the model will decrease, 

effects and patterns that actually are not recognized may be identified.  
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Figure 7. Algorithm scheme for T & Q algorithm 
 


